# < Appendix >

# Table of contents

| 1         | Table of conte                                                  | ants               |               |
|-----------|-----------------------------------------------------------------|--------------------|---------------|
| 1.        | ADSIFACI                                                        |                    | Attachment_3  |
|           | 1.1. realures                                                   |                    | Attachment 4  |
|           | 1.2.1 Write Format                                              |                    | Attachment 4  |
|           | 1.2.1. while Format                                             |                    | Attachment 4  |
|           | 1.2.2. Read Format                                              |                    | Attachment 4  |
|           |                                                                 |                    | Auachinem-4   |
| 2.        | Description of functions                                        |                    |               |
|           | 2.1. Gesture sensing                                            |                    | Attachment-5  |
|           | 2.2. Proximity sensing                                          |                    | Attachment-5  |
|           | 2.3. Software-shutdown mode                                     |                    | Attachment-5  |
|           | 2.4. Hardware-shutdown                                          |                    | Attachment-5  |
|           | 2.5. Auto-shutdown/Continuous operating function                |                    | Attachment-5  |
|           | 2.6. Number of measurement cycles (Persistence)                 |                    | Attachment-5  |
|           | 2.7. Resolution/Measuring time                                  |                    | Attachment-5  |
|           | 2.8. Maximum measurable range                                   |                    | Attachment-5  |
|           | 2.9. Intermittent operating function                            |                    | Attachment-5  |
|           | 2.10. LED drive peak current setting                            |                    | Attachment-5  |
|           | 2.11. INT terminal output type setting                          |                    | Attachment-5  |
|           | 2.12. LED pulse setting                                         |                    | Attachment-5  |
|           | 2.13. Software reset                                            |                    | Attachment-5  |
|           | 2.14. Interrupt function                                        |                    | Attachment-6  |
|           | 2.15. Offset function                                           |                    | Attachment-6  |
|           |                                                                 |                    |               |
| <u>3.</u> | Basic operation                                                 |                    |               |
|           | 3.1. Gesture sensor mode(GS) and Proximity sensor mode (PS)     | ••••••             | Attachment-6  |
| 4         | Register Manning                                                |                    |               |
|           | 4.1. Register Mapping                                           |                    | Attachment-7  |
|           | 4.2. Precautions for Register setting                           |                    | Attachment-7  |
|           | 4.3. Register Functions                                         |                    | Attachment-8  |
|           | 4.4. Register settings for Basic operation                      |                    | Attachment-8  |
|           | 4.4.1. Software-shutdown                                        | :OP[3]             | Attachment-8  |
|           | 4.4.2. Auto-shutdown/Continuous operation                       | :OP[2]             | Attachment-8  |
|           | 4.4.3. Intermittent operating function                          | :INTVAL[1:0]       | Attachment-8  |
|           | 4.4.4. Interrupt data setting                                   | :INTSEL[2:0]       | Attachment-9  |
|           | 4.4.5. INT terminal setting                                     | :PIN               | Attachment-9  |
|           | 4.4.6. Interrupt type setting                                   | :INTTYPE           | Attachment-9  |
|           | 4.4.7. Software reset                                           | :RST               | Attachment-9  |
|           |                                                                 |                    |               |
| <u>5.</u> | Register settings for GS and PS                                 |                    |               |
|           | 5.1. Output value of sensing result for detection/non-detection | :PROX A            | Attachment-10 |
|           | 5.2. Output value of PS interrupt result                        | :FLAG A            | ttachment-10  |
|           | 5.3. Number of measurement cycles setting                       | :PRST[2:0] A       | Attachment-10 |
|           | 5.4. Resolution/Measuring duration setting                      | :RES[1:0]          | Attachment-10 |
|           | 5.5. Maximum measurable range                                   | :RANGE[2:0]        | Attachment-11 |
|           | 5.6. LED drive peak current setting                             | :IS [2:0]          | Attachment-11 |
|           | 5.7. LED pulse setting                                          | :SUM[2:0]          | Attachment-11 |
|           | 5.8. LED pulse width setting                                    | :PULSE[1:0]        | Attachment-12 |
|           | 5.9. Gesture and Proximity low threshold (Loff)                 | :TL[15:0]          | Attachment-12 |
|           | 5.10. Gesture and Proximity high threshold (Lon)                | :TH[15:0]          | Attachment-12 |
|           | 5.11. Gesture offset (Offset)                                   | :OS_Dx[13:0]       | Attachment-12 |
|           | 5.12. GS Detection result                                       | :Dx[13:0],D4[15:0] | Attachment-12 |

:SATx ..... Attachment-13

5.13. Saturation Detection result of the integrator

| 6.          | INT terminal output mode                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------|
|             | 6.1. Proximity detection/non-detection sensing result output mode Attachment-14                     |
|             | 6.2. Interrupt output mode                                                                          |
| 7.          | Average consumption current in operation                                                            |
|             | 7.1. Average consumption current in operation Attachment-15                                         |
|             | 7.2. Average consumption current at gesture sensor(GS) and proximity sensor (PS) mode Attachment-15 |
| <u>8.</u>   | Countermeasure against external light noise in PS mode                                              |
|             | 8.1. Countermeasure against external light noise Attachment-16                                      |
| <u>9. 1</u> | Recommended operating mode/Procedure of register setting                                            |
|             | 9.1. Shutdown mode Attachment-16                                                                    |
| 10.         | Sample programs                                                                                     |
| 10.         | Attachment-16                                                                                       |
|             |                                                                                                     |
| <u>11.</u>  | Recommended Window Size (Reference)                                                                 |
|             | Attachment-17                                                                                       |
| <u>12.</u>  | Data (Reference)                                                                                    |
|             | 12.1. LED drive peak current Attachment-18                                                          |
|             | 12.1.1. LED drive peak current vs. VLED (Vcc=VLED) Attachment-18                                    |
|             | 12.1.2. LED drive peak current vs. Vcc (VLED=3V)                                                    |
|             | 12.1.3. Proximity sensor Attachment-19                                                              |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |
|             |                                                                                                     |

#### Abstract

GP2AP052A00F(GS part) is Gesture and Proximity sensor with function gesture sensing and proximity sensing by setting register.

Judgment result of object existence can be referred by reading register value(14bit) via I<sup>2</sup>C bus interface. INT terminal can be changed either interrupt output or sensing result output (detection/non-detection status) by setting register.



Fig.1 Operating mode of GP2AP052A00F(Gesture sensor(GS) and Proximity sensor(PS))

## 1.1. Features

#### Design

This product is composed of following three chips in one package, which is IC1 with the four built-in PD(photodiode) for Gesture sensors and proximity sensors, IC2 with a built-in PD(clear and infrared photodiode) for ambient light sensors(ALS), and infrared LED.

Achieving Small all-in-one package by Doubly-integrally-molded, transparent resin and light shield resin.

#### • I<sup>2</sup>C bus interface

This product has 7bit slave address adherence to I<sup>2</sup>C bus interface and can change register value for each function via I<sup>2</sup>C bus.

#### • INT terminal setting

INT terminal can be changed either interrupt output or sensing result output (detection/non-detection status) by setting register .

#### Power save mode

Software-shutdown /Hardware-shutdown

## 1.2. I<sup>2</sup>C bus interface

This product has 7bit slave address adherence to I<sup>2</sup>C bus interface and can change register value for each function via I<sup>2</sup>C bus. Besides, judgment result for detection/non-detection status can be read via I<sup>2</sup>C bus.

Table 1. Terminals for I2C bus interface are as follows.

| Pin Name | Description               |
|----------|---------------------------|
| SCL      | I <sup>2</sup> C Clock    |
| SDA      | I <sup>2</sup> C Data bus |

Basic data format are as follows.



Fig.2 I<sup>2</sup>C Basic data format

DATA: Data which write into internal register/read from internal register. SLAVE ADDRESS :

|                       |    | Table 2. $1^2$ | $\mathcal{I}$ slave add | ress |    |    |    |     |
|-----------------------|----|----------------|-------------------------|------|----|----|----|-----|
| ADDR terminal setting | A6 | A5             | A4                      | A3   | A2 | A1 | A0 | R/W |
| Slave address         | 1  | 0              | 0                       | 0    | 1  | 0  | 1  | Х   |
|                       |    |                |                         |      |    |    |    |     |

R/W : Read:X=1, Write:X=0

#### 1.2.1. Write Format

Write value in register and enable to write the next address sequentially after writing data. Data writing will be end with inputting stop-condition.

WordAddress:00H PROX, FLAG register in 00H are read only.

WordAddress:10H~19H D0[13:0], D1[13:0], D2[13:0] ,D3[13:0] and D4[15:0] registers from 10H to 19H are read only.



A: ACK, NA: NACK, S: START, P: STOP, X: don't care

Master output : Slave output

Fig.3 I<sup>2</sup>C write format

## 1.2.2. Read Format

Enable to read data in register. Following address can be read sequentially by inputting ACK after reading data. Reading data will be stopped by inputting NACK.

Stop-condition after setting Word address can be deleted since it corresponds to repeat-start-condition. Reading read data is done by not opening I<sup>2</sup>C bus interface.



A: ACK, NA: NACK, S: START, P: STOP, X: don't care



Fig.4 I<sup>2</sup>C read format

## 1.2.3. Others and Notes

This product doesn't support Clock-stretch function and General-call-address function.

# 2. Description of functions

## 2.1. Gesture sensing

Gesture sensing results can be read at D0[13:0],D1[13:0],D2[13:0],D3[13:0], and D4[15:0] register through I<sup>2</sup>C bus interface.

The device outputs raw data of the four IR photodiodes sensitive to only infrared spectrum gesture sensing. It is necessary for device host (user side) to get detection results with calculation of gesture values for each channel data at D0[13:0],D1[13:0],D2[13:0],D3[13:0] and total value of each channel data at D4[15:0].

The device outputs interrupt signal to INT terminal in case that Data(D4[15:0]) exceed/fall below judgment threshold level(TH[15:0]/TL[15:0]) set before sensing operation.

Interrupt data source is selected by INTSEL[2:0] register.

#### 2.2.Proximity sensing

Proximity sensing results can be read at D4[15:0] register through I<sup>2</sup>C bus interface.

The device outputs interrupt signal or detection/non-detection status on INT terminal in which case D4[15:0] exceed/fall below judgment threshold level(TH[15:0]/TL[15:0]) set before sensing operation.

#### 2.3. Software-shutdown mode

This product has shutdown function by which all circuits except  $I^2C$  go into shutdown mode and cease to draw supply current. In this case,  $I^2C$  communication is available. Current consumption (ICC<sub>\_S\_GS</sub>) in shutdown mode is less than 5uA when  $I^2C$  bus interface is not used.

#### 2.4. Hardware-shutdown

All the circuits can be completely stopped by stopping the power supply to the terminal Vcc, and the current consumption can completely be cut.

#### 2.5. Auto-shutdown/ Continuous operating function

Select continuous operation or auto-shutdown after one time operation by setting OP[2] register.

#### 2.6. Number of measurement cycles(Persistence)

Select number of measurement cycles by setting PRST[2:0] register(from 1time to 8times). Sensor outputs interrupt signal or judgment result of detection/non-detection state by detecting threshold setting cycles continuously. This function helps to decrease malfunction by noise such as flash of camera.

#### 2.7. Resolution/Measuring time

Resolution and measuring time can be changed by setting RES[1:0] register.

#### 2.8. Maximum measurable range

Maximum measurable range can be changed by setting RANGE[2:0] register.

## 2.9. Intermittent operating function

This function is to reduce average consumption current by stopping part of circuit intermittently, and this is different from software shutdown function. Intermittent operating duration can be changed by setting INTVAL[1:0] register. Setting a longer intermittent operating duration makes LED average consumption current lower. However, update period of the detection result becomes long. It will make response time of detecting longer.

## 2.10. LED drive peak current setting

Change drive peak current by setting IS[2:0] register. (LED drive peak current is 17.5mA, 35mA, 70mA ,140mA and 193mA)

## 2.11. INT terminal output type setting

INT terminal can be changed either interrupt output or sensing result output (detection/non-detection status) by setting PIN register.

#### 2.12. LED pulse setting

LED pulse setting can be changed by setting SUM[2:0] register. Number of LED pulses can be changed from 1time to 128times. LED pulse width is 9usec. Setting a lower number of LED pulses makes LED average consumption current lower.

#### 2.13. Software reset

All registers can be initialized by writing 1 to RST register. RST register value also becomes 0 automatically which is initial value.

## 2.14. Interrupt function

Interrupt function becomes available by setting TH[15:0] register and TL[15:0] register.

Interrupt signal or detecting/non-detecting judgment result is outputted to INT terminal in case that detection result (D4[15:0] value) is less than TL[15:0] setting value or more than TH[15:0] value.

Enable to change desirable threshold in detecting distance and hysteresis by setting TH[15:0] and TL[15:0] registers. However, detecting distance depends on LED output power as well. It can be changed by setting IS[2:0] register.

#### 2.15. Offset function

Offset function becomes available by setting OS\_D0[13:0],OS\_D1[13:0],OS\_D2[13:0] and OS\_D3[13:0] register. Offset function is the ability to reduce the cross talk count for gesture and proximity sensor.

If you set offset value OS\_D0[13:0],detection result (D0[13:0] value) is gotten by subtraction of offset value (OS\_D0[13:0]).

#### 3. Basic operation

#### 3.1. Gesture sensor(GS) and Proximity sensor(PS) mode

The device can detect proximity objects by which integrates incident light in IR(infrared) photodiode during the time without emission of LED (LED off) and the time with emission of LED (LED on) in order to eliminate the influence of ambient light.

The way of detection is as follows;

- [1]In LED on/off period, this device store a signal charge which is subtracted LEDoff period charge from LEDon period charge automatically. (Recommend setting for SUM[2:0] is 16times of LED pulses.)
- [2]In Count period, this device convert from a signal charge to digital value.
- (Recommend setting for RES[1:0] is 14bit resolution.)
- [3]Then, obtain detection result by subtracting the influence of ambient light. By using this value, proximity sensing judgment is done if reflective object is there or not.



Fig.5 Output results for GS mode

# 4. Register Mapping

# 4.1. Register Mapping

When Vcc power is supplied, GP2AP052A00F starts up with initializing all registers.

|         | DECNAME      |         |         |          | DA       | ТА       |          |         |         | Initial      |
|---------|--------------|---------|---------|----------|----------|----------|----------|---------|---------|--------------|
| ADDRESS | KEG NAME     | D7      | D6      | D5       | D4       | D3       | D2       | D1      | D0      | Value        |
| 001     | COMMANDI     | OP3     | OP2     |          |          |          |          |         |         | <b>L</b> '00 |
| 001     | COMMANDI     |         |         |          |          | PROX     | FLAG     |         |         | П 00         |
| 01H     | COMMAND II   | INTVAL1 | INTVAL0 | INTSEL2  | INTSEL1  | INTSEL0  | PIN      | INTTYPE | RST     | H'00         |
| 02H     | PS I         | PRST2   | PRST1   | PRST0    | RES1     | RES0     | RANGE2   | RANGE1  | RANGE0  | H'00         |
| 03H     | PS II        | IS2     | IS1     | IS0      | SUM2     | SUM1     | SUM0     | PULSE1  | PULSE0  | H'00         |
| 04H     | INT_LT_LSB   | TL7     | TL6     | TL5      | TL4      | TL3      | TL2      | TL1     | TL0     | H'00         |
| 05H     | INT_LT_MSB   | TL15    | TL14    | TL13     | TL12     | TL11     | TL10     | TL9     | TL8     | H'00         |
| 06H     | INT_HT_LSB   | TH7     | TH6     | TH5      | TH4      | TH3      | TH2      | TH1     | TH0     | H'FF         |
| 07H     | INT_HT_MSB   | TH15    | TH14    | TH13     | TH12     | TH11     | TH10     | TH9     | TH8     | H'FF         |
| 08H     | OS_DATA0_LSB | OS_D0_7 | OS_D0_6 | OS_D0_5  | OS_D0_4  | OS_D0_3  | OS_D0_2  | OS_D0_1 | OS_D0_0 | H'00         |
| 09H     | OS_DATA0_MSB |         |         | OS_D0_13 | OS_D0_12 | OS_D0_11 | OS_D0_10 | OS_D0_9 | OS_D0_8 | H'00         |
| 0AH     | OS_DATA1_LSB | OS_D1_7 | OS_D1_6 | OS_D1_5  | OS_D1_4  | OS_D1_3  | OS_D1_2  | OS_D1_1 | OS_D1_0 | H'00         |
| 0BH     | OS_DATA1_MSB |         |         | OS_D1_13 | OS_D1_12 | OS_D1_11 | OS_D1_10 | OS_D1_9 | OS_D1_8 | H'00         |
| 0CH     | OS_DATA2_LSB | OS_D2_7 | OS_D2_6 | OS_D2_5  | OS_D2_4  | OS_D2_3  | OS_D2_2  | OS_D2_1 | OS_D2_0 | H'00         |
| 0DH     | OS_DATA2_MSB |         |         | OS_D2_13 | OS_D2_12 | OS_D2_11 | OS_D2_10 | OS_D2_9 | OS_D2_8 | H'00         |
| 0EH     | OS_DATA3_LSB | OS_D3_7 | OS_D3_6 | OS_D3_5  | OS_D3_4  | OS_D3_3  | OS_D3_2  | OS_D3_1 | OS_D3_0 | H'00         |
| 0FH     | OS_DATA3_MSB |         |         | OS_D3_13 | OS_D3_12 | OS_D3_11 | OS_D3_10 | OS_D3_9 | OS_D3_8 | H'00         |
| 10H     | DATA0 LSB    | D0_7    | D0_6    | D0_5     | D0_4     | D0_3     | D0_2     | D0_1    | D0_0    | H'00         |
| 11H     | DATA0 MSB    | SAT0    |         | D0_13    | D0_12    | D0_11    | D0_10    | D0_9    | D0_8    | H'00         |
| 12H     | DATA1 LSB    | D1_7    | D1_6    | D1_5     | D1_4     | D1_3     | D1_2     | D1_1    | D1_0    | H'00         |
| 13H     | DATA1 MSB    | SAT1    |         | D1_13    | D1_12    | D1_11    | D1_10    | D1_9    | D1_8    | H'00         |
| 14H     | DATA2 LSB    | D2_7    | D2_6    | D2_5     | D2_4     | D2_3     | D2_2     | D2_1    | D2_0    | H'00         |
| 15H     | DATA2 MSB    | SAT2    |         | D2_13    | D2_12    | D2_11    | D2_10    | D2_9    | D2_8    | H'00         |
| 16H     | DATA3 LSB    | D3_7    | D3_6    | D3_5     | D3_4     | D3_3     | D3_2     | D3_1    | D3_0    | H'00         |
| 17H     | DATA3 MSB    | SAT3    |         | D3_13    | D3_12    | D3_11    | D3_10    | D3_9    | D3_8    | H'00         |
| 18H     | DATA4 LSB    | D4_7    | D4_6    | D4_5     | D4_4     | D4_3     | D4_2     | D4_1    | D4_0    | H'00         |
| 19H     | DATA4 MSB    | D4_15   | D4_14   | D4_13    | D4_12    | D4_11    | D4_10    | D4_9    | D4_8    | H'00         |

## Table 3. Register Mapping

# 4.2. Precautions for Register setting

- Please start setting registers after power-supply voltage becomes stable up to 90% or more set value. Please wait for some 1msec before setting registers from power-on.

- PROX, FLAG registers are able to be cleared by writing 0 data in each register.

(but these registers can't be written 1 data.)

- Please don't set the address 19H and the larger ones. (Test registers are assigned in those addresses)

#### 4.3. Register Functions

Functions and set contents of the registers are shown below.

Table 4. description of the register function

| ADDR    | register    | function                           | setting                                                                                  |
|---------|-------------|------------------------------------|------------------------------------------------------------------------------------------|
|         | OP3         | Software shutdown                  | 0:shutdown, 1:operation                                                                  |
| 004     | OP2         | Auto shutdown/Continuous operation | 0:auto shutdown, 1:continuous operating function                                         |
| 0011    | PROX        | detection/non-detection            | 0:non-detection, 1:detection                                                             |
|         | FLAG        | interrupt result                   | 0:non-interrupt, 1:interrupt                                                             |
|         | INTVAL[1:0] | Intermittent operating             | 00: 0msec, 01: 1.56msec, 10: 6.25msec, 11: 25msec                                        |
|         | INTSEL[2:0] | The interrupt data setting         | 000:D0[13:0], 001:D1[13:0], 010:D2[13:0], 011:D3[13:0], 100:D4[15:0], 101~11:not allowed |
| 01H     | PIN         | INT terminal setting               | 0:FLAG, 1:PS(Detection/Non-detection)                                                    |
|         | INTTYPE     | Interrupt type setting             | 0:level, 1:pulse                                                                         |
|         | RST         | Software Reset                     | 0:not reset, 1:reset                                                                     |
|         | PRST[2:0]   | Number of measurement cycles       | 000 : once - 111 : 8cycles                                                               |
| 02H     | RES[1:0]    | Resolution                         | 00:14bits(6.25msec),01:12bits(1.56msec),10:10bits(0.39msec),11:8bits(0.1msec)            |
|         | RANGE[2:0]  | Maximum measurable range           | 000:×1 - 111:×128                                                                        |
|         | IS[2:0]     | LED drive peak current setting     | 000:17.5mA、001:35.0mA、010:70mA、011:140mA、111:193mA、                                      |
| 03H     | SUM[2:0]    | LED pulse setting                  | 000:not allowed, 001:×2 to 111:×128                                                      |
|         | PULSE[1:0]  | LED pulse width setting            | 00:9.16us, 01:6.11us, 10:4.58us, 11:3.82us                                               |
| 04H.05H | TL          | Low threshold setting(Loff)        | 16bits counts setting                                                                    |
| 06H,07H | TH          | High threshold setting(Lon)        | 16bits counts setting                                                                    |
| 08H,09H | OS_DATA0    | DATA0 offset count(Offset0)        | 14bits counts setting                                                                    |
| 0AH,0BH | OS_DATA1    | DATA1 offset count(Offset1)        | 14bits counts setting                                                                    |
| 0CH,0DH | OS_DATA2    | DATA2 offset count(Offset2)        | 14bits counts setting                                                                    |
| 0EH,0FH | OS_DATA3    | DATA3 offset count(Offset3)        | 14bits counts setting                                                                    |
| 10H,11H | D0          | DATA0 result                       | 14bits output data of Photodiode0                                                        |
| 12H,13H | D1          | DATA1 result                       | 14bits output data of Photodiode1                                                        |
| 14H,15H | D2          | DATA2 result                       | 14bits output data of Photodiode2                                                        |
| 16H,17H | D3          | DATA3 result                       | 14bits output data of Photodiode3                                                        |
| 18H,19H | D4          | DATA0-DATA3 sum                    | 16bits output data of all Photodiode(D4=D0+D1+D2+D3)                                     |

#### 4.4. Register settings for Basic operation

## 4.4.1. Software-shutdown: OP[3] (ADDRESS:00H)

Control power supply to the circuit. LED drive circuit is always off in shutdown mode. After power on,

start with shutdown mode.

OP [3] register (Address 00H)

0: shutdown mode

1: operating mode.

#### 4.4.2. Auto-shutdown/Continuous operation: OP[2] (ADDRESS:00H)

Select auto-shutdown mode or continuous operating mode. After shutdown, OP[3] register will be automatically cleared. OP [2] register (Address 00H)

0: auto shutdown mode

0: auto snutdown mo

1: continuous operating mode.

## 4.4.3. Intermittent operating function: INTVAL[1:0] (ADDRESS 01H)

Enable to change intermittent operating periods by setting INTVAL [1:0] register (Address 01H).

00: 0msec, 01: 1.56msec, 10: 6.25msec, 11: 25msec

Intermittent operating will be done during period set by INTVAL [1:0] register.

For GS mode, in case of INTVAL[1:0]=10(6.25msec), quiescent operation time will be after GS operation.

Although setting a longer intermittent operating period contributes to reduce average consumption current,

it makes update period and response time for detection longer as a result. Need to set it considering your actual conditions in use.



Fig.6 Intermittent operating

#### 4.4.4. Interrupt data setting: INTSEL[2:0] (ADDRESS 01H)

Select interrupt data souce by setting INTSEL[2:0] register (Address 01H).

| 14010 011   |                    | B                      |
|-------------|--------------------|------------------------|
| INTSEL[2:0] | The interrupt data | Remarks                |
| 000         | D0[13:0]           |                        |
| 001         | D1[13:0]           |                        |
| 010         | D2[13:0]           |                        |
| 011         | D3[13:0]           |                        |
| 100         | D4[15:0]           | recommended(proximity) |
| 101         | NA                 |                        |
| 110         | NA                 |                        |
| 111         | NA                 |                        |

Table 5. Number of measurement cycles setting

\* Grayed-out portions is not recommended.

## 4.4.5. INT terminal setting: PIN (ADDRESS 01H)

Select output mode in INT terminal by setting PIN register (Address 01H). The outputs by FLAG, PROX can be selected.

|     | Table 6. INT terminal setting           |             |
|-----|-----------------------------------------|-------------|
| PIN | Setting                                 | Output data |
| 0   | Interrupt output                        | FLAG        |
| 1   | Detection/Non-detection judgment output | PROX        |

## 4.4.6. Interrupt type setting: INTTYPE (ADDRESS:01H)

Select level interrupt type or pulse interrupt type. INTTYPE register (Address 01H)

0: level interrupt type

In this case, transition from H to L in INT terminal become occurring interrupt signal and INT terminal will hold L level until interrupt is cleared.



Fig.8 Interrupt output (pulse interrupt type )

## 4.4.7. Software reset: RST (ADDRESS 01H)

Initialize all registers by writing 1 in RST register. RST register is also initialized automatically and becomes 0.

## 5. Register settings for GS and PS

# 5.1. Output value of sensing result for detection/non-detection: PROX (ADDRESS 00H)

Sensing result for detection/non-detection is output. There is a function which clears data by writing 0 in PROX register. PROX register(Address 00H): 0: non-detection, 1: detection

# 5.2. Output value of interrupt result: FLAG (ADDRESS 00H)

FLAG register is output interrupt result.

There is a function which clears by writing 0 in d FLAG register.

FLAG register (Address 00H) : 0: non-interrupt, 1: interrupt

## 5.3. Number of measurement cycles setting: PRST[2:0] (ADDRESS:02H)

Select number of measurement cycles by setting PRST[2:0] register. Judgment result for detection/non-detection is over threshold continuously more than the set cycles in PRST[2:0] register. This judgment result is done in using the detection result of distance (D4[15:0]).

| Table 7. N | umber of measurement cycles | setting              |
|------------|-----------------------------|----------------------|
| PRST[2:0]  | Persistance Cycle           | Remarks              |
| 000        | 1 cycle                     | recommended(gesture) |
| 001        | 2cycles                     |                      |
| 010        | 3cycles                     |                      |
| 011        | 4cycles                     |                      |
| 100        | 5cycles                     |                      |
| 101        | 6cycles                     |                      |
| 110        | 7cycles                     |                      |
| 111        | 8cycles                     |                      |

• Algorithm for detecting object in PS is as follows.

< Judge the change from non-detecting status to detecting status

Detection result is over high threshold (Lon) N times continuously : Detection

Other: Non-detection

<Judge the change from detecting status to non-detecting status>

Detection result is over low threshold (Loff) N times continuously : Non-Detection Other : Detection

# 5.4. Resolution/Measuring duration setting: RES [1:0] (ADDRESS 02H)

Select measuring resolution and measuring duration by setting RES[1:0] register (Address 02H). If resolution is low, measuring tolerance becomes large. Please have an adjustment at your system.

| RES[1:0] | Resolution | Measuring duration | Remarks                 |
|----------|------------|--------------------|-------------------------|
| 00       | 14bit      | 6.25msec           | recommended             |
| 01       | 12bit      | 1.56msec           | recommended             |
| 10       | 10bit      | 0.39msec           |                         |
| 11       | 8bit       | 0.098msec          |                         |
|          |            | * Grayed-          | out portions is not rec |

Table 8. Resolution/Measuring duration setting

\* Grayed-out portions is not recommended.

## 5.5. Maximum measurable range: RANGE[2:0] (ADDRESS 02H)

Select maximum measurable range by setting RANGE [2:0] register (Address 02H).

Detect with a set range. Maximum count value is outputted in case of incident light exceeding maximum measurable range.

Changing maximum measurable range, detection result count is also change. In case of considering  $000: \times 1$  setting as  $\times 1$  time, count would be 1/2 times at 001:  $\times 2$  setting, 1/4 times at 010:  $\times 4$  setting. Adjusting detecting distance by proximity low threshold TL[15:0] and TH[15:0]. It is necessary to set them considering the condition in the actual use and evaluating at your system.

|            | Table 9. Maximum measurable | range                |                         |
|------------|-----------------------------|----------------------|-------------------------|
| RANGE[2:0] | Maximum measurable range    | Remarks              |                         |
| 000        | ×1                          |                      |                         |
| 001        | ×2                          | recommended          |                         |
| 010        | ×4                          |                      |                         |
| 011        | $\times 8$                  |                      |                         |
| 100        | ×16                         |                      |                         |
| 101        | ×32                         |                      |                         |
| 110        | ×64                         |                      |                         |
| 111        | ×128                        |                      |                         |
|            |                             | * Grayed-out portion | ons is not recommended. |

## 5.6. LED drive peak current setting IS[2:0] (ADDRESS 03H)

Enable to select LED drive peak current by setting IS[2:0] register (Address 03H).

In case of changing this setting, the count will change correspond to the set LED drive peak current. Please adjust detecting distance with proximity low threshold TL[15:0] and proximity high threshold TH[15:0]. LED drive peak current will depend on Vcc voltage. (Refer to 12.1. LED drive peak current data)

| IS[2:0] | LED drive peak current | Remarks            |
|---------|------------------------|--------------------|
| 000     | 17.5 mA                |                    |
| 001     | 35 mA                  |                    |
| 010     | 70 mA                  |                    |
| 011     | 140 mA                 | racommondad        |
| 111     | 193 mA                 | recommended        |
|         |                        | * Grayed-out porti |

#### Table 10. LED drive peak current

# 5.7. LED pulse setting: SUM[2:0] (ADDRESS 03H)

Select LED pulse setting by setting SUM[2:0] register (Address 03H).

If LED pulse setting is low, measuring tolerance becomes large. Please have an adjustment at your system. Number of LED pulses can be changed from 2times to 128times.

|          | Table 11. LED pulse setting |
|----------|-----------------------------|
| SUM[2:0] | LED pulse setting           |
| 000      | NA                          |
| 001      | ×2 times                    |
| 010      | ×4 times                    |
| 011      | ×8 times                    |
| 100      | ×16 times                   |
| 101      | ×32 times                   |
| 110      | ×64 times                   |
| 111      | ×128 times                  |
|          |                             |

\* Grayed-out portions is not recommended.

Remarks

recommended

#### 5.8. LED pulse setting: PULSE[1:0] (ADDRESS 03H)

Select LED pulse width setting by setting PULSE[1:0] register (Address 03H).

| PULSE[1:0] | LED pulse width(usec) | Remarks     |
|------------|-----------------------|-------------|
| 00         | 9.16                  | recommended |
| 01         | 6.11                  |             |
| 10         | 4.58                  |             |
| 11         | 3.82                  |             |

Table 12. LED pulse width setting

\* Grayed-out portions is not recommended.

## 5.9. Gesture and Proximity low threshold (Loff):TL[15:0] (ADDRESS 04H、05H)

Sets proximity low threshold in TL[15:0] register at PS mode.

Please set it with confirming at optical mounting condition in the actual use.

# 5.10. Gesture and Proximity high threshold (Lon):TH[15:0] (ADDRESS 06H、07H)

Sets proximity high threshold in TH[15:0] register at PS mode.

Please set it with confirming at optical mounting condition in the actual use.

# 5.11. Gesture offset (Offset):OS\_D0[13:0],OS\_D1[13:0],OS\_D2[13:0],OS\_D3[13:0] (ADDRESS 08H~0FH)

Sets proximity offset in PO[13:0] register at PS mode.

If there is Panel crosstalk, you will be able to subtract the Panel crosstalk count by using proximity offset. Please set it with confirming at optical mounting condition in the actual use.

# 5.12. GS Detection result: D0[13:0], D1[13:0], D2[13:0], D3[13:0], D4 [15:0] (ADDRESS 10H~19H)

Detection result of gesture sensing is output to D0[13:0], D1[13:0], D2[13:0], D3[13:0] and D4[15:0] register (Address 10H~19H).

Detection result is defined as follows,

| Detection result(D0[13:0]) = Raw count(D0[13:0], include panel crosstalk) – Offset(OS_D0[13:0]) |
|-------------------------------------------------------------------------------------------------|
| Detection result(D1[13:0]) = Raw count(D1[13:0], include panel crosstalk) – Offset(OS_D1[13:0]) |
| Detection result(D2[13:0]) = Raw count(D2[13:0], include panel crosstalk) – Offset(OS_D2[13:0]) |
| Detection result(D3[13:0]) = Raw count(D3[13:0], include panel crosstalk) – Offset(OS_D3[13:0]) |

Gesture detection:

If the detected object on the right, D0[13:0]+D3[13:0] > D1[13:0]+D2[13:0]. If the detected object on the left, D0[13:0]+D3[13:0] < D1[13:0]+D2[13:0]. If the detected object on the top, D0[13:0]+D1[13:0] > D2[13:0]+D3[13:0]. If the detected object on the bottom, D0[13:0]+D1[13:0] < D2[13:0]+D3[13:0].



Fig.9 The built-in Photodiodes position(PD0, PD1, PD2, PD3).

Photodiode0(PD0) count value is stored to the raw count of D0[13:0]. Photodiode1(PD1) count value is stored to the raw count of D1[13:0]. Photodiode2(PD2) count value is stored to the raw count of D2[13:0]. Photodiode3(PD3) count value is stored to the raw count of D3[13:0].

# 5.13. Saturation Detection result of the integrator: SAT0, SAT1, SAT2, SAT3 (ADDRESS 11H, 13H, 15H, 17H)

Saturation detection result of the integrator is output to SAT0, SAT1, SAT2, SAT3 register (Address 11H, 13H, 15H, 17H).

- If the integrator(PD0) is saturated, SAT0 register is set to 1.
- If the integrator(PD1) is saturated, SAT1 register is set to 1.
- If the integrator(PD2) is saturated, SAT2 register is set to 1.
- If the integrator(PD3) is saturated, SAT3 register is set to 1.

## 6. INT terminal output mode

# 6.1. Proximity detection/non-detection sensing result output mode

INT terminal operates with sensing result output mode by setting PIN register(Address 01H) 11:detection/non-detection sensing result output mode. Sensing result whether or not object is detected is able to be read out via  $I^2C$  bus interface and output from INT terminal with negative logic.



Fig.10 Detection result output mode

# 6.2. Interrupt output mode

Operates as interrupt output mode by setting PIN register (Address 01H) 0,1: interrupt output mode.

There are two kinds of output mode(level interrupt & pulse interrupt, see 4.4.5. Interrupt type setting). Below is a description of the level interrupt type.

The result of interrupt judgment is written into FLAG register (Address 00H), and is read out from I<sup>2</sup>C bus interface. (0: Non-interrupt, 1: interrupt.)

In this case, transition from H to L in INT terminal become occurring interrupt signal and INT terminal will be hold L level until interrupt is cleared. Interrupt will be cleared in writing 0 data in FLAG register.



Fig.11 Interrupt output (level interrupt type)

Detecting operation will continue while INT terminal is L level. Update proximity detection result D4[15:0] and sensing result of object detection/non-detection status. Therefore, host needs to read data after FLAG register clear.

For example, as shown in below diagram,

Interrupt occurs with FLAG=1: interrupt

Actual object moves "Detection" to "Non-detection" to "Detection" while interrupt is cleared.

In this case, while INT terminal (FLAG register) is hold, PROX value will be updated with result of judgment for detection/non-detection of object.



Fig.12 Interrupt output mode (level interrupt type)

# 7. Average consumption current in operation

## 7.1. Average consumption current in operation

Average consumption current in operation is the sum of the average current consumption value with Vcc terminal and LED consumption. The LED driven current flows from LEDA terminal to GND terminal.

## 7.2. Average consumption current at gesture sensor (GS) and proximity sensor(PS) mode

In case of continuous operation, average consumption current in LED is estimated as below.

[LED average consumption current] = LED drive peak current  $\times$  (LED pulse setting  $\times$  9.2usec)/ (measuring time + Intermittence time) [LED drive peak current]: IS[2:0] register. 000 : 17.5mA, 001 : 35.0mA, 010 : 70mA, 011 : 140mA, 111 : 193mA [LED pulse setting]: SUM[2:0] register. 000 : NA, 001 : x2, 010 : x4, 011 : x8, 100 : x16, 101 : x32, 110 : x64, 111 : x128 [measuring time] : Enable to set with RES[1:0] register. 00 : 6.25msec(14bit), 01 : 1.56msec(12bit), 10 : 0.39msec(10bit), 11 : 0.098msec(8bit) [Intermittence operating time] : Enable to set with INTVAL[1:0] register. 00 : Omsec, 01 : 1.56msec, 10 : 6.25msec, 11 : 25msec For example, [LED drive peak current] : 140mA IS[2:0]=011 [LED pulse setting] : x16 SUM[2:0]=100 [LED pulse width setting] : 9.2 usecPULSE[1:0]=00 [measuring time] : 6.25msec(14bit) RES[1:0]=00 [Intermittence operating time] : Omsec INTVAL[1:0]=00 In the above case, [LED averaging consumption current] =  $140 \text{mA} \times 16 \times 9.2 \text{usec} / (6.25 \text{msec} + 0 \text{msec}) = 3.3 \text{mA}$ 

Also, using auto-shut down function, it will be automatically shutdown after one operation. Utilizing it with adjusting your system, it contributes to reduce averaging consumption current in LED.

## 8. Countermeasure against external light noise

# 8.1 Countermeasure against external light noise

This product makes judgment of detection/non-detection by integrating light amount in PD for setting duration. This device store a signal charge which is subtracted LED-off period charge from LED-on period charge automatically.

#### 9. Recommended operating mode/Procedure of register setting



Fig.13 Recommended operating mode

#### 9.1. Shutdown mode

Below is an example of shutdown mode.

If you shut down, the INT terminal states are maintained. The power consumption will increase as the INT terminal keeps low level. It is recommended that you clear the interrupt.

| Та | able | 12. example of sett | ing for S | hutdown mode |     |
|----|------|---------------------|-----------|--------------|-----|
|    |      | Example.            |           |              | Dae |

| Setting                                   | Example  | Register  |
|-------------------------------------------|----------|-----------|
| Operation mode                            | Shutdown | OP[3]=b'0 |
| Detection/non-detection sensing<br>result | Clear    | PROX=b'0  |
| Detecting interrupt result                | Clear    | FLAG=b'0  |

| Table 13. | example | of register | setting table                          | for S | hutdown | mode |
|-----------|---------|-------------|----------------------------------------|-------|---------|------|
|           |         |             | ···· · · · · · · · · · · · · · · · · · |       |         |      |

| Register Register |           | Register value |      | Deveevlee |
|-------------------|-----------|----------------|------|-----------|
| ADDRESS           | SYMBOL    | Bite           | Hex  | Remarks   |
| 00H               | COMMAND I | b'0000_0000    | h'00 |           |

#### 10. Sample programs

For the source code, if desired, and we submit.

The transmissivity of the filter recommends more than  $20\% \pm 5\%$ .

(wavelength  $\lambda$ =400nm to 700nm)

The transmissivity of the filter recommends more than 80%  $\pm 5\%$ . (wavelength  $\lambda$ =940nm)



1. Please print not to transmit infrared.

- 2. Even recommended window size may cause malfunction depending on the reflection from the panel. In this case, it is effective to be extended the printing area between windows, but affects detection distance and ALS output.
- Bease confirm that there is no problem with an actual machine in consideration of the implementation gap, the misalignment of the windows and voltage variation.

# 12. Data (Reference)12.1. LED drive peak current12.1.1. LED drive peak current vs. VLED (Vcc=VLED)



Fig.15 LED drive peak current vs. VLED





Fig.16 LED drive peak current vs. Vcc

## 12.1.3. Proximity sensor

Sensor output counts(D4) vs. distance



Fig.17 Sensor output counts vs. distance

Attachment -19